یپوفارم Biopharm

The 5th Biopharm Scientific Annual Meeting BSAM5, Alger le 28 juin 2025

DRUG LOADING AND DISSOLUTION PROPERTIES OF LIDOCAINE- POLYESTER MICROPARTICLES

S. BOURICHE ¹, K. DAOUD¹

¹Laboratory of Transfer Phenomena, Faculty of Mechanical and Process Engineering, USTHB

Abstract

Known for a long time, Lidocaine (LDC) is an important local anesthetic drug with anti-arrhythmic properties which relieves pain. However, due to its short analgesic effect, continuous infusion is usually required, which often results in infection or systemic toxicity. To overcome these problems, micro/nano-encapsulation in biodegradable polyester (Ps) is considered to prepare prolonged-release formulations.

The main goal of this work was to formulate and evaluate injectable microparticles of LDC, by using two different polyesters, Ps1 and Ps2 ; to prolong the release time.

Keywords : microparticles, emulsification method, dissolution rate, lidocaine.

1-INTRODUCTION

Challenge: Persistent post surgical pain is known health care problem with а substantial impact in patients' lives.

♦ Goal: Improve LDC administration by encapsulation for a better treatment.

Nanocapsule

Nanosphere

Table 1: Composition of the tested LDC-PS formulations:

Composition	PS1 (50-200)	PS2 (50-200)
LDC (mg)	50	50
Tween 80 (%)	1	1
Ultrapure Water (ml)	100	100

Figure 1: Schematic representation of LDC-PS preparation

Where [Drug]t refers to the concentration of drug released at time t and [Drug]total is the total amount of drug in nanoparticles.

REFERENCES

1: H.M. Badawi et al. / Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 142 (2015) 382-391 383

2: P. Agarwal et al. / International Journal of Pharmaceutics 621 (2022) 121819.

3: F. Molavi et al. / Journal of Controlled Release, 320 (2020) 265-282.

3-RÉSULTATS ET DISCUSSION

► LDC loading efficiency was equal to 64.32 % with Ps1, while it was equal to 70.2 % with Ps2.

4-CONCLUSION

Sustained release of LDC from Ps1 microparticles presents a promising alternative for anesthetic use and improving therapeutic outcomes.

Next steps:

Development of a clinical candidate and preclinical evaluation of efficacy LDC-PS safety and in nano/microparicles.